Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Phys Med Biol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38479023

RESUMEN

Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in radiotherapy treatment planning. Thus, it is of great significance to explore automatic segmentation approaches, among which deep learning-based approaches have evolved rapidly and witnessed remarkable progress in multi-organ segmentation. However, obtaining an appropriately sized and fine-grained annotated dataset of multiple organs is extremely hard and expensive. Such scarce annotation limits the development of high-performance multi-organ segmentation models but promotes many annotation-efficient learning paradigms. Among these, studies on transfer learning leveraging external datasets, semi-supervised learning using unannotated datasets and partially-supervised learning integrating partially-labeled datasets have led the dominant way to break such dilemma in multi-organ segmentation. We first review the traditional fully supervised method, then present a comprehensive and systematic elaboration of the 3 abovementioned learning paradigms in the context of multi-organ segmentation from both technical and methodological perspectives, and finally summarize their challenges and future trends.

2.
Mar Pollut Bull ; 196: 115617, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37826909

RESUMEN

The potentially toxic elements (PTEs), Cu, Pb, Zn, Cd, Cr, Hg and As in the water from the Beibu Gulf, were investigated to reveal the contaminant characteristics and assess the risks to human health. The results showed that the concentration of PTEs in the Beibu Gulf varies significantly both seasonally and spatially, with higher concentrations in summer and in the northern and southern gulf. Terrestrial inputs and local anthropogenic discharge are responsible for the higher level in the northern gulf, and the transportation of water masses is also an important factor for the higher concentrations in the southern gulf. Ecological risk assessment suggested that Hg is the main ecological risk factor. The health risk assessment revealed that dermal exposure to PTEs in the gulf presents potentially carcinogenic health effects for humans. This study provides new insight into the transport of PTEs over a large area of the Beibu Gulf.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Humanos , Metales Pesados/análisis , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua de Mar , Mercurio/análisis , China , Agua , Medición de Riesgo , Contaminantes del Suelo/análisis , Suelo
3.
Opt Express ; 31(16): 26014-26026, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710472

RESUMEN

Underwater optical communication and low-light detection are usually realized via blue-green laser sources and blue-green light-sensitive detectors. Negative-electron-affinity AlGaAs photocathode is an ideal photosensitive material for ocean exploration due to its adjustable spectrum range, long working lifetime, and easy epitaxy of materials. However, compared with other photocathodes, the main problem of AlGaAs photocathode is its low quantum efficiency. Based on Spicer's three-step photoemission model, nanoarray structures are designed on the surface of AlGaAs photocathode to improve its quantum efficiency from two aspects of optical absorption and photoelectron transport. Through simulation, it is concluded that the cylinder with diameter of 120 nm and height of 600 nm is the best nanoarray structure, and its absorptance is always greater than 90% in the 445∼532 nm range. Moreover, the absorptance and quantum efficiency of the cylinder nanoarray AlGaAs photocathode are less affected by the incident angle. When the angle of incident light reaches 70°, the minimum absorptance and quantum efficiency are still 64.6% and 24.9%. In addition, the square or hexagonal arrangement pattern of the nanoarray has little effect on the absorptance, however, a reduction in the overall emission layer thickness will decrease the absorptance near 532 nm.

4.
Diagnostics (Basel) ; 13(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37443644

RESUMEN

BACKGROUND: Clinically, physicians diagnose portal vein diseases on abdominal CT angiography (CTA) images scanned in the hepatic arterial phase (H-phase), portal vein phase (P-phase) and equilibrium phase (E-phase) simultaneously. However, existing studies typically segment the portal vein on P-phase images without considering other phase images. METHOD: We propose a method for segmenting portal veins on multiphase images based on unsupervised domain transfer and pseudo labels by using annotated P-phase images. Firstly, unsupervised domain transfer is performed to make the H-phase and E-phase images of the same patient approach the P-phase image in style, reducing the image differences caused by contrast media. Secondly, the H-phase (or E-phase) image and its style transferred image are input into the segmentation module together with the P-phase image. Under the constraints of pseudo labels, accurate prediction results are obtained. RESULTS: This method was evaluated on the multiphase CTA images of 169 patients. The portal vein segmented from the H-phase and E-phase images achieved DSC values of 0.76 and 0.86 and Jaccard values of 0.61 and 0.76, respectively. CONCLUSION: The method can automatically segment the portal vein on H-phase and E-phase images when only the portal vein on the P-phase CTA image is annotated, which greatly assists in clinical diagnosis.

5.
Clin. transl. oncol. (Print) ; 25(7): 2043-2055, jul. 2023. ilus
Artículo en Inglés | IBECS | ID: ibc-222376

RESUMEN

Nanoparticles are widely used in the biomedical field for diagnostic and therapeutic purposes due to their small size, high carrier capacity, and ease of modification, which enable selective targeting and as contrast agents. Over the past decades, more and more nanoparticles have received regulatory approval to enter the clinic, more nanoparticles have shown potential for clinical translation, and humans have increasing access to them. However, nanoparticles have a high potential to cause unpredictable adverse effects on human organs, tissues, and cells due to their unique physicochemical properties and interactions with DNA, lipids, cells, tissues, proteins, and biological fluids. Currently, issues, such as nanoparticle side effects and toxicity, remain controversial, and these pitfalls must be fully considered prior to their application to body systems. Therefore, it is particularly urgent and important to assess the safety of nanoparticles acting in living organisms. In this paper, we review the important factors influencing the biosafety of nanoparticles in terms of their properties, and introduce common methods to summarize the biosafety evaluation of nanoparticles through in vitro and in body systems (AU)


Asunto(s)
Humanos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Seguridad
6.
J Colloid Interface Sci ; 644: 10-18, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37088013

RESUMEN

Recently, potassium-ion batteries (PIBs) have been considered as one of the most promising energy storage systems; however, the slow kinetics and large volume variation induced by the large radius of potassium ions (K+) during chemical reactions lead to inferior structural stability and weak electrochemical activity for most potassium storage anodes. Herein, a multilevel space confinement strategy is proposed for developing zinc-cobalt bimetallic selenide (ZnSe/Co0.85Se@NC@C@rGO) as high-efficient anodes for PIBs by in-situ carbonizing and subsequently selenizing the resorcinol-formaldehyde (RF)-coated zeolitic imidazolate framework-8/zeolitic imidazolate framework-67 (ZIF-8/ZIF-67) encapsulated into 2D graphene. The highly porous carbon microcubes derived from ZIF-8/ZIF-67 and carbon shell arising from RF provide rich channels for ion/electron transfer, present a rigid skeleton to ensure the structural stability, offer space for accommodating the volume change, and minimize the agglomeration of active material during the insertion/extraction of large-radius K+. In addition, the three-dimensional (3D) carbon network composed of graphene and RF-derived carbon-coated microcubes accelerates the electron/ion transfer rate and improves the electrochemical reaction kinetics of the material. As a result, the as-synthesized ZnSe/Co0.85Se@NC@C@rGO as the anode of PIBs possesses the excellent rate capability of 203.9 mA h g-1 at 5 A g-1 and brilliant long-term cycling performance of 234 mA h g-1 after 2,000 cycles at 2 A g-1. Ex-situ X-ray diffraction (Ex-situ XRD) diffraction reveals that the intercalation/de-intercalation of K+ proceeds through the conversion-alloying reaction. The proposed strategy based on the spatial confinement engineering is highly effective to construct high-performance anodes for PIBs.

7.
Mar Pollut Bull ; 188: 114676, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36764143

RESUMEN

Atmospheric greenhouse gas (GHG) emissions from seagrass meadows that determine the ecosystem atmospheric cooling effect have rarely been quantified. This study measured the simultaneous fluxes direct to the atmosphere of three GHGs (CO2, CH4 and N2O) within a Halophila beccarii seagrass meadow and an adjacent unvegetated bare intertidal flat, and their relationships to seagrass abundance and relevant soil parameters. The results showed that seasonal variation in seagrass abundance was strongly linked with the CO2 exchange rate. The CH4 and N2O fluxes were similarly low at both sites and comparable between winter and summer. The global warming potential of CH4 and N2O reduced the ecosystem CO2 uptake by only 5 % at the seagrass site. The results indicated that the H. beccarii meadow had a stronger atmospheric cooling effect than the bare flat and that the seagrass-mediated CO2 flux in this oligotrophic seagrass meadow primarily determined the atmospheric cooling effect.


Asunto(s)
Dióxido de Carbono , Ecosistema , Dióxido de Carbono/análisis , Metano/análisis , Óxido Nitroso/análisis , Monitoreo del Ambiente , Suelo
8.
Clin Transl Oncol ; 25(7): 2043-2055, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36807057

RESUMEN

Nanoparticles are widely used in the biomedical field for diagnostic and therapeutic purposes due to their small size, high carrier capacity, and ease of modification, which enable selective targeting and as contrast agents. Over the past decades, more and more nanoparticles have received regulatory approval to enter the clinic, more nanoparticles have shown potential for clinical translation, and humans have increasing access to them. However, nanoparticles have a high potential to cause unpredictable adverse effects on human organs, tissues, and cells due to their unique physicochemical properties and interactions with DNA, lipids, cells, tissues, proteins, and biological fluids. Currently, issues, such as nanoparticle side effects and toxicity, remain controversial, and these pitfalls must be fully considered prior to their application to body systems. Therefore, it is particularly urgent and important to assess the safety of nanoparticles acting in living organisms. In this paper, we review the important factors influencing the biosafety of nanoparticles in terms of their properties, and introduce common methods to summarize the biosafety evaluation of nanoparticles through in vitro and in body systems.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Contención de Riesgos Biológicos , Nanopartículas/uso terapéutico , Sistemas de Liberación de Medicamentos/efectos adversos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico
9.
Mol Omics ; 16(1): 73-82, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31899468

RESUMEN

Glioblastoma is the most lethal brain cancer in adults. Despite advances in surgical techniques, radiotherapy, and chemotherapy, their therapeutic effect is far from significant, since the detailed underlying pathological mechanism of this cancer is unclear. The establishment of molecular interaction networks has laid the foundation for the exploration of these mechanisms with a view to improving therapy for glioblastoma. In the present study, to further explore the cellular role of DCF1 (dendritic cell-derived factor 1), the proteins bound to TAT-DCF1 (transactivator of transcription-dendritic cell-derived factor 1) were identified, and biosystem analysis was employed. Functional enrichment analyses indicate that TAT-DCF1 induced important biological changes in U251 cells. Furthermore, the established molecular interaction networks indicated that TAT-DCF1 directly interacted with TAF6 in glioma cells and with UBC in HEK293T (human embryonic kidney 293T) cells. In addition, further biological experiments demonstrate that TAT-DCF1 induced the activation of the RPS27A/TOP2A/HMGB2/BCL-2 signaling pathway via interaction with TAF6 in U251 cells. Taken together, these findings suggest that the TAT-DCF1 peptide possesses great potential for the development of glioblastoma therapy through the interaction with TAF6-related pathways and provides further theoretic evidence for the mechanisms underlying the antitumor effects of TAT-DCF1.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Productos del Gen tat/metabolismo , Glioblastoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mapas de Interacción de Proteínas , Proteómica/métodos , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo II/metabolismo , Glioblastoma/patología , Células HEK293 , Proteína HMGB2/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Ribosómicas/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo
10.
Neuropeptides ; 71: 21-31, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30001801

RESUMEN

BACKGROUND: Glioblastoma is one of the most malignant brain cancer, thus, establishing an effective therapy is paramount. Our previous results indicate that dendritic cell-derived factor (DCF1) is an attractive candidate for therapy against Glioblastoma, since its overexpression in Glioblastoma U251 cells leads to apoptosis. However, the delivery approach limits its clinical application, in this paper, we expressed TAT-DCF1 fusion protein in E.coli in order to surmount its current delivery problems. METHODS: The coding sequences of the different domains of DCF1 (full length, cytoplasmic, extracellular, 19-amino acid), together with the N-terminal transactivator of transcription (TAT) sequence, were amplified and subcloned into the bacterial expression vector pET30a(+) in order to produce (His)6-tagged fusion proteins. Coomassie blue-stained SDS-PAGE and Western blotting identification showed that purity of the fusion proteins. RESULTS: Immunofluorescence and flow cytometry show that U251 cells were efficiently transduced with the fusion proteins. Cell viability, proliferation, and migration assays suggest that the complete TAT-DCF1 fusion protein significantly decreased U251 proliferation and migration. Flow cytometry further reveals that TAT-DCF1 triggered cellular apoptosis. CONCLUSIONS: In conclusion, these findings suggest that the TAT-DCF1 fusion protein was efficiently transduced into Glioblastoma U251 cells and induced the antitumor effect and support further investigation into specific targeting and side effects of TAT-DCF1 during drug delivery.


Asunto(s)
Apoptosis/genética , Neoplasias Encefálicas/patología , Movimiento Celular/genética , Proliferación Celular/genética , Glioblastoma/patología , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Técnicas de Transferencia de Gen , Glioblastoma/genética , Humanos , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...